wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of cos2π7+cos4π7+cos6π7 is =1a Find a.

Open in App
Solution

Given, cos2π7+cos4π7+cos6π7=2cos3π7cosπ7+cos6π7
=2cos3π7cosπ7cosπ7=cosπ7(2cos3π71)
=cosπ7(2cos3π71)sin3π7sin3π7=cosπ7(2cos3π7cos3π7sin3π7)sin3π7
=cosπ7(sin6π7sin3π7)sin3π7=cosπ7(2sin3π14cos9π14)2sin3π14cos3π14
=cosπ7cos9π14cos3π14=12(cos11π14+cos7π14)cos3π14
=12cos3π14+0cos3π14=12

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction to Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon