The value of cos(sin−135+sin−1513) is ____
Given:
cos(sin−135+sin−1513)
We know that, sin−1A+sin−1B=sin−1x√1−y2+y√1−x2
=cos⎛⎝sin−1⎛⎝35√1−(513)2+513√1−(35)2⎞⎠⎞⎠
=cos(sin−1(35×1213+513×45))
=cos(sin−1(36+2065))=cos(sin−1(5665))---(1)
We know that, sin−1x=cos−1(√1−x2)
Now, sin−1(5665) =cos−1(√1−(5665)2)=cos−1(3365)
From (1)
cos(sin−1(5665))=cos(cos−1(3365))=3365
Therefore, cos(sin−135+sin−1513)=3365
Hence, Option C. is correct.