The correct option is A π−x2
1−sinx=(cosx2−sinx2)2
1+sinx=(cosx2+sinx2)2
Hence,
√1−sinx+√1+sinx√1−sinx−√1+sinx
=(cosx2−sinx2)+(cosx2+sinx2)(cosx2−sinx2)−(cosx2+sinx2)
=2cosx2−2sinx2
=−cotx2
The range of inverse cotangent function is (0,π)
Substitute (2) in (1)
=cot−1(−cotx2)
Since ,[cot−1(−cotx)=π−cot−1cotx]
=π−x2