We know
2sinx[cosx+cos3x+cos5x+...+cos(2k−1)x]=2sinxcosx+2sinxcos3x+2sinxcos5x+...+2sinxcos(2k−1)x=sin2x+(sin4x−sin2x)+(sin6x−sin4x)+...+(sin2kx−sin(2k−2)x)=sin2kx
∴2[cosx+cos3x+cos5x+...+cos(2k−1)x]=sin2kxsinx
Now 4π∫π20sin(2m+1)xsinxdx
=4π∫π20sin2mxcotxdx+4π∫π20cos(2m+1)xdx
=4π∫π20dx+8π∫π20[cosx+cos3x+cos5x+...+cos(2k−1)x]dx
+4π∫π20cos(2mx)dx+4π∫π20cos(2m+1)xdx
=4π(π2)=2