wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of 4ππ20sin(2m+1)xsinxdx is

Open in App
Solution

We know
2sinx[cosx+cos3x+cos5x+...+cos(2k1)x]=2sinxcosx+2sinxcos3x+2sinxcos5x+...+2sinxcos(2k1)x=sin2x+(sin4xsin2x)+(sin6xsin4x)+...+(sin2kxsin(2k2)x)=sin2kx
2[cosx+cos3x+cos5x+...+cos(2k1)x]=sin2kxsinx
Now 4ππ20sin(2m+1)xsinxdx
=4ππ20sin2mxcotxdx+4ππ20cos(2m+1)xdx
=4ππ20dx+8ππ20[cosx+cos3x+cos5x+...+cos(2k1)x]dx
+4ππ20cos(2mx)dx+4ππ20cos(2m+1)xdx
=4π(π2)=2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon