91!+192!+353!+574!+855!+...∞
Let S=91!+192!+353!+574!+855!+...∞
and S1=9+19+35+57+85+.....tn ....(1)
S1=9+19+35+57+85+....+tn ...(2)
Subtracting (2) from (1), we get
0=9+10+16+22+28+....+tn
or tn=9+[10+16+22+28+....upto(n−1)terms]
⇒tn=9+(n−1)2(20+(n−2)6)
⇒tn=9+(n−1)(3n+4)
So, nth terms of the given series is
Tn=9+(n−1)(3n+4)n!
⇒Tn=3n2+n+5n!
⇒Tn=3n2n!+nn!+5n!
⇒Tn=3n(n−1)!+1(n−1)!+5n!
⇒Tn=3n−3(n−1)!+3(n−1)!+1(n−1)!+5n!
⇒Tn=3(n−2)!+4(n−1)!+5n!
S=∑Tn
=3∑1(n−2)!+4∑1(n−1)!+5∑1n!
=3e+4e+5(e−1)=12e−5
Comparing with given value
x=12,y=5
⇒x−y=7