The correct option is B -1
Given, a+bω+cω2b+cω+aω2+a+bω+cω2c+aω+bω2
=a+bω+cω2b+cω+aω2+ωω⋅a+bω+cω2c+aω+bω2
=a+bω+cω2b+cω+aω2+aω+bω2+cω3cω+aω2+bω3
=a+bω+cω2b+cω+aω2+aω+bω2+ccω+aω2+b,[∵ω3=1]
=a+bω+cω2+aω+bω2+cb+cω+aω2
=a(1+ω)+b(ω+ω2)+c(1+ω2)b+cω+aω2
=a(−ω2)+b(−1)+c(−ω)b+cω+aω2,[∵1+ω+ω2=0]
=−1