The value of sin20∘cos70∘+cos20∘sin70∘sin23∘cosec23∘+cos23∘sec23∘ is
We know that sin(A)cosB=sin(A+B) And sin(A)=1cosecA Also, cos(A)=1secA So, sin200cos700+cos200sin700sin230cosec230+cos230sec230=sin(200+700)1+1=12 (Since, sin900=1)
Prove that: (i) cos 55∘+cos 65∘+cos 175∘=0 (ii) sin 50∘−sin 70∘+sin 10∘=0 (iii) cos 80∘+cos 40∘−cos 20∘=0 (iv) cos 20∘+cos 100∘+cos 140∘=0 (v) sin5π18−cos4π9=√3sinπ9 (vi) cosπ12−sinπ12=1√2 (vii) sin 80∘−cos 70∘=cos 50∘ (viii) sin 51∘−cos 81∘=cos21∘
Find the value of (cos20∘−sin20∘) (1+4sin20∘cos20∘)