The value of I=5π/2∫π/2etan−1(sinx)etan−1(sinx)+etan−1(cosx)dx, is
A
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
e
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bπ I=5π/2∫π/2etan−1(sinx)etan−1(sinx)+etan−1(cosx)dx⇒I=2π∫π/2etan−1(sinx)etan−1(sinx)+etan−1(cosx)dx+5π/2∫2πetan−1(sinx)etan−1(sinx)+etan−1(cosx)dx⋯(1)Usingb∫af(x)dx=b∫af(a+b−x)dx⇒I=2π∫π/2etan−1(sin(2π+π2−x))etan−1(sin(2π+π2−x))+etan−1(cos(2π+π2−x))dx+5π/2∫2πetan−1(sin(2π+5π2−x))etan−1(sin(2π+5π2−x))+etan−1(cos(2π+π2−x))dx⇒I=2π∫π/2etan−1(cosx)etan−1(sinx)+etan−1(cosx)dx+5π/2∫πetan−1(cosx)etan−1(sinx)+etan−1(cosx)dx⋯(2) (1)+(2) ⇒2I=2π∫π/21dx+5π/2∫2π1dx⇒2I=x∣∣∣5π/2π/2=2π⇒I=π