The value of ∫10loge(x+1)1+x2dx=πlnab, then a2+b2 equal to
A
20
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
68
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
40
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Noneofthese
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A68 I=∫10loge(x+1)1+x2dxx=tanθdxdθ=1+x2I=∫π40loge(1+tanθ)dθI=∫π40loge(1+tan(π4−θ))dθI=∫π40loge(21+tanθ)dθI=∫π40loge2dθ−∫π40loge(1+tanθ)dθ2I=loge2π4I=π4ln2a=2and,b=8Now,a2+b2=4+64=68.