The value of ∫1022x+1−52x−110xdx is
∫10(22x+1+52x−110x)dx 2∫10(410)xdx−1/5∫102510xdx =2(410)xlog(4)10∫10−15(2510)log(2510) =2[(410)−1]log(2/5)−1/5[(2510−1)]log(5/2) 2(−3/5)l0g(2/5)−1/5(3/2)log(5/2) =−3/5[2log(2/5)+12log(5/2)].
Find the mode from the given data.
1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2 , 3, 4, 1, 2, 3, 4, 1 ,2 , 3, 4, 5, 5, 1, 5, 5, 5, 3, 5, 1, 2, 4, 5, 6, 1, 2, 4, 2, 1
Simplify:
(i) √5+√3√5−√3+√5−√3√5+√3
(ii) 12+√3+2√5−√3+12−√5
(iii) 2√5+√3+1√3+√2−3√5+√2