The correct option is B 0
Let I=∫10tan−1(2x−11+x−x2)dx
⇒I=∫10tan−1(x−(1−x)1+x(1−x))dx
⇒I=∫10[tan−1x−tan−1(1−x)]dx ................ (1)
⇒I=∫10[tan−1(1−x)−tan−1(1−1+x)]dx
⇒I=∫10[tan−1(1−x)−tan−1(x)]dx
⇒I=∫10[tan−1(1−x)−tan−1(x)]dx ........... (2)
Adding (1) and (2), we obtain
2I=∫10(tan−1x+tan−1(1−x)−tan−1(1−x)−tan−1x)dx=0
⇒I=0
Hence, the correct Answer is B.