The correct option is B 0
Let I=∫π20log(4+3sinx4+3cosx)dx .............. (1)
⇒I=∫π20log⎡⎢
⎢⎣4+3sin(π2−x)4+3cos(π2−x)⎤⎥
⎥⎦dx,(∵∫a0f(x)dx=∫a0f(a−x)dx)
⇒I=∫π20log(4+3cosx4+3sinx)dx ........... (2)
Adding (1) and (2), we obtain
2I=∫π20{log(4+3sinx4+3cosx)+log(4+3cosx4+3sinx)}dx
⇒2I=∫π20log(4+3sinx4+3cosx×4+3cosx4+3sinx)dx
⇒2I=∫π20log1dx=∫π200dx
⇒I=0
Hence, the correct Answer is C.