The correct options are
B π2√2
C same as that of ∫∞0x2dx1+x4
I=∫∞0dx1+x4 ....(1)
∫∞0x2+1−x21+x4dx
=∫∞0x21+x4dx+∫∞01−x21+x4dx ....(2)
Let I1=∫∞0x21+x4dx
and I2=∫∞01−x21+x4dx
I2=∫∞01x2−11x2+x2dx
I2=∫∞01x2−11x2+x2+2−2dx
I2=∫∞01x2−1(x+1x)2−2dx
Put x+1x=y
⇒dy=(1−1x2)dx
Also, when x=0⇒y=∞
And when x=∞⇒y=∞
∴I2=∫∞∞−1y2−2dy=0
∴I=∫∞0x2dx1+x4 .....(3)
Adding equations (1) and (3), we get
2I=∫∞01+x21+x4dx
=∫∞01x2+11x2+x2dx
=∫∞01x2+11x2+x2+2−2dx
=∫∞01x2+1(x−1x)2+2dx
Put x−1x=t
⇒dt=(1+1x2)dx
2I=∫∞−∞dtt2+2
=[1√2tan−1t√2]∞−∞=π√2
∴I=π2√2