The correct option is A 0
Let , I=∫π/20sin8xlogcotxcos2xdx......(1)
By applying the property , ∫baf(x)dx=∫baf(a+b−x)dx
We get , I=∫π/20sin(8(π2−x))logcot(π2−x)cos2(π2−x)dx
I=∫π/20sin8xlogtanxcos2xdx.....(2)
(1)+(2)⇒ 2I=∫π/20sin8xlog(tanxcotx)cos2xdx=∫π/20sin8xlog(1)cos2xdx=0
Therefore , I=0.....Ans