The correct option is C π2
Let I=∫π20x+sinx1+cosxdx
Substituting tan(x2)=t⇒12sec2(x2)dx=dt
We get sinx=2t1+t2,cosx=1−t21+t2,dx=2dt1+t2
Therefore
I=∫102tan−1t+2t1+t21+1−t21+t22dt1+t2=∫10(2tan−1t+2t1+t2)dt=∫102tan−1tdt+∫102t1+t2dt=2[ttan−1t−12log(t2+1)]10+[log(t2+1)]10=2(π4−12log2−0+0)+(log2+0)=π2