CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

The value of $$\displaystyle \int_0^{\pi} |cos  x| dx$$ is


A
1
loader
B
2
loader
C
0
loader
D
4
loader

Solution

The correct option is B 2
We have,
$$I = \displaystyle \int_{o}^{\pi} |cos  x| dx = \int_{o}^{\pi/2} |cos  x| dx + \int_{\pi/2}^{\pi} |cos  x| dx$$
$$\Rightarrow I = \displaystyle \int_{o}^{\pi/2} cos  x  dx - \int_{\pi/2}^{\pi} cos  x  dx = [sin  x]_0^{\pi/2} - [sin  x]_{\pi/2}^{\pi}$$
$$\Rightarrow I = (1 - 0) - (0 -1) = 2$$

Mathematics

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
People also searched for
View More



footer-image