The value of ∫21(x[x2]+[x2]x)dx, where [.] denotes the greatest integer function, is equal to
A
54+√3+(2√3−2√2)+1log3(9−3√3)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
54+√3+√23+1log2(2√3−2√2)+1log3(9−3√3)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
54+√23+1log2(2√3−2√2)+1log3(9−3√3)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of the above
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A54+√3+√23+1log2(2√3−2√2)+1log3(9−3√3) ∫21(x[x2]+[x2]x)dx=∫√21(x[x2]+[x2]x)dx+∫√3√2(x[x2]+[x2]x)dx+∫2√3(x[x2]+[x2]x)dx=∫√21(x+1)dx+∫(x2+2x)dx+∫2√3(x3+3x)dx =54+√3+2√3+1log2(2√3−2√2)+1log3(9−3√3)