The correct option is A π8loge2
Let I=∫1+√5211+1x2x2−1+1x2log(1+x−1x)dx
=∫1+√5211+1x2(x−1x)2+1log(1+x−1x)dx
Put x−1x=t
⇒(1+1x2)dx=dt
Also, when x=1⇒t=0
And when x=√5+12⇒t=1
∴I=∫10ln(1+t)dt1+t2
Put t=tanθ
⇒dt=sec2θdθ
∴I=∫π40ln(1+tanθ)dθ
I=∫π40ln(1+tan(π4−θ))dθ
=∫π40ln(1+1−tanθ1+tanθ)dθ
=∫π40ln(21+tanθ)dθ
=∫π40ln2−ln(1+tanθ)dθ
⇒I=∫π40ln2dθ−∫π40ln(1+tanθ)dθ
2I=∫π40ln2dθ
2I=ln2[θ]π40
I=π8log2