The value of ∫5π−2πcot−1(tanx)dx is equal to:
Let cot−1(tanx)=θ
Then, tanx=cotθ
Differentiating,
sec2xdx=−csc2θdθ
dx=−csc2θsec2xdθ
Since
tanx=cotθ
⇒±√sec2x−1=cotθ
sec2x−1=cot2θ
sec2x=1+cot2θ=csc2θ
Hence,
dx=−csc2θsec2xdθ=−dθ
∴∫cot−1(tanx)dx=−∫θdθ
=−θ22+c
Since the function y=cot−1x has the range (0,π),
cot−1(tan(−2π))=cot−1(0)=π2
cot−1(tan(5π))=cot−1(0)=π2
∴∫5π−2πcot−1(tanx)dx=−θ22∣∣∣π2π2=0