The value of ∫555x⋅55x⋅5xdx is equal to?
Consider the given integral.
I=∫555x⋅55x⋅5xdx
Let, u=55x⇒x=lnuln5ln5
du=5x+5xln2(5)dx
dx=5−x−5x(ln5)2du
Thus, we have,
I=∫5uu5x5−x−5x(ln5)2du
I=∫u5u−5lnuln5ln5(ln5)2du
I=1(ln5)2∫5udu
I=1(ln5)25uln(5)+C
I=1(ln(5))3+C
I=555x(ln(5))3+C
Hence, this is the required result.