The value of ∫8cos(5x2)⋅sin2x⋅cos(3x2)dx is
(where C is constant of integration)
A
−2cosx+cos2x2−2cos3x3−cos6x6+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2cosx+cos2x2+2cos3x3−cos6x6+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−2cosx+cos2x−2cos3x3−cos6x3+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
2cosx+cos2x−2cos3x3−cos6x6+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C−2cosx+cos2x−2cos3x3−cos6x3+C Let I=∫8cos(5x2)⋅sin2x⋅cos(3x2)dx ⇒I=∫(4sin2x[cos4x+cosx])dx (∵2cosacosb=cos(a+b)+cos(a−b)) ⇒I=2∫(2sin2xcos4x+2sin2xcosx])dx ⇒I=2∫((sin6x+sin(−2x))+(sin3x+sinx))dx ⇒I=2∫((sin6x−sin2x)+(sin3x+sinx))dx ⇒I=2(−cos6x6+cos2x2−cos3x3−cosx1)+C ∴I=−2cosx+cos2x−2cos3x3−cos6x3+C