wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of 8cos(5x2)sin2xcos(3x2)dx is
(where C is constant of integration)

A
2cosx+cos2x22cos3x3cos6x6+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2cosx+cos2x2+2cos3x3cos6x6+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2cosx+cos2x2cos3x3cos6x3+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
2cosx+cos2x2cos3x3cos6x6+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 2cosx+cos2x2cos3x3cos6x3+C
Let I=8cos(5x2)sin2xcos(3x2)dx
I=(4sin2x[cos4x+cosx])dx
(2cosacosb=cos(a+b)+cos(ab))
I=2(2sin2xcos4x+2sin2xcosx])dx
I=2((sin6x+sin(2x))+(sin3x+sinx))dx
I=2((sin6xsin2x)+(sin3x+sinx))dx
I=2(cos6x6+cos2x2cos3x3cosx1)+C
I=2cosx+cos2x2cos3x3cos6x3+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon