A) I=∫√31√1+x2x2dx
Substituting x=tant⇒dx=sec2tdt, we get
I=∫π3π4csc2tsectdt=∫π3π4sectdt+∫π3π4cottcsctdt=[log(sect+tant)]π3π4−[csct]π3π4=log(2+√3√2+1)−(2√3−√2)
B) J=∫21√x2−1xdx
Substituting x=sect⇒dx=tantsectdt, we get
J=∫π30tan2tdt=∫π30(sec2t−1)dt=[tant−t]π30=√3−π3
C) K=∫10√(1−x2)3
Substituting x=sint⇒dx=costdt, we get
K=∫π20cos4tdt=∫π20(cos2t(1−sin2t))dt=∫π20cos2tdt−∫π20sin2tcos2tdt=[3t8+sintcos3t4+3sintcost8]π20=3π16
D) L=∫2√21x5√x2−1dx
Substituting x=sect⇒dx=tantsectdt, we get
L=∫π3π4cos4tdt=∫π3π4(cos2t(1−sin2t))dt=∫π3π4cos2tdt−∫π3π4sin2tcos2tdt=[3t8+sintcos3t4+3sintcost8]π3π4=(π8+√364+3√332−3π32−116−316)=132(π+7√32−8)