wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of baf(x)dx

Open in App
Solution

A) I=311+x2x2dx
Substituting x=tantdx=sec2tdt, we get
I=π3π4csc2tsectdt=π3π4sectdt+π3π4cottcsctdt=[log(sect+tant)]π3π4[csct]π3π4=log(2+32+1)(232)
B) J=21x21xdx
Substituting x=sectdx=tantsectdt, we get
J=π30tan2tdt=π30(sec2t1)dt=[tantt]π30=3π3
C) K=10(1x2)3
Substituting x=sintdx=costdt, we get
K=π20cos4tdt=π20(cos2t(1sin2t))dt=π20cos2tdtπ20sin2tcos2tdt=[3t8+sintcos3t4+3sintcost8]π20=3π16
D) L=221x5x21dx
Substituting x=sectdx=tantsectdt, we get
L=π3π4cos4tdt=π3π4(cos2t(1sin2t))dt=π3π4cos2tdtπ3π4sin2tcos2tdt=[3t8+sintcos3t4+3sintcost8]π3π4=(π8+364+33323π32116316)=132(π+7328)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon