Byju's Answer
Standard XII
Mathematics
First Fundamental Theorem of Calculus
The value of ...
Question
The value of
∫
√
sin
3
2
x
sin
5
x
d
x
is
A
2
5
2
tan
−
5
2
x
5
+
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2
5
2
tan
5
2
x
5
+
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−
2
5
2
tan
−
5
2
x
5
+
C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
−
2
5
2
tan
5
2
x
5
+
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
B
−
2
5
2
tan
−
5
2
x
5
+
C
Consider the given integral.
I
=
∫
√
sin
3
2
x
sin
5
x
d
x
I
=
∫
sin
3
2
2
x
sin
5
x
d
x
I
=
∫
(
2
sin
x
cos
x
)
3
2
sin
5
x
d
x
I
=
2
3
2
∫
sec
2
x
tan
7
2
x
d
x
Put
u
=
tan
x
⇒
d
u
=
sec
2
x
d
x
Therefore,
I
=
2
3
2
∫
1
u
7
2
x
d
u
I
=
2
3
2
∫
u
−
7
2
d
u
I
=
2
3
2
u
−
5
2
−
5
2
+
C
Put the value of
u
in the above expression, we get
I
=
−
2
5
2
tan
−
5
2
x
5
+
C
Hence, this is the correct answer.
Suggest Corrections
0
Similar questions
Q.
The angles of a hexagon are
(
2
x
+
5
)
∘
,
(
3
x
−
5
)
∘
,
(
x
+
35
)
∘
,
(
2
x
+
20
)
∘
,
(
2
x
+
25
)
∘
and
(
2
x
+
30
)
∘
. Find the value of
x
.
Q.
10
x
−
25
÷
2
x
−
5
Q.
Factorize:
10
x
−
25
÷
2
x
−
5
Q.
Divide
(
10
x
−
25
)
÷
(
2
x
−
5
)
.
Q.
Evaluate
(
10
x
−
25
)
÷
(
2
x
−
5
)
View More
Related Videos
Fundamental Theorem of Calculus
MATHEMATICS
Watch in App
Explore more
First Fundamental Theorem of Calculus
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app