The correct option is D 4ln|x+2|−2ln|x+1|+C
2xx2+3x+2=2x(x+1)(x+2)⇒2x(x+1)(x+2)=A(x+1)+B(x+2)⇒2x=A(x+2)+B(x+1)⋯(1)
Equating the coefficients of x and constant term, we obtain
A+B=22A+B=0
Solving these equations, we obtain
A=−2, B=4∴∫2x(x+1)(x+2)dx=∫[4(x+2)−2(x+1)]dx=4ln|x+2|−2ln|x+1|+C