The correct option is A 65x+35ln|sinx+2cosx+3|−85tan−1(12(tanx2+1))+C
I=∫3cosx+2sinx+2cosx+3dx
Let,
3cosx+2=A(sinx+2cosx+3)+B(cosx−2sinx)+D
Comparing the coefficients of sinx,cosx and constant term on both sides, we get
A−2B=0,2A+B=3,3A+D=2⇒A=65,B=35 and D=−85∴I=∫A(sinx+2cosx+3)+B(cosx−2sinx)+Dsinx+2cosx+3dx⇒I=A∫dx+B∫cosx−2sinxsinx+2cosx+3dx+D∫1sinx+2cosx+3dx⇒I=Ax+Bln|sinx+2cosx+3|+D⋅I1where I1=∫1sinx+2cosx+3dxI1=∫12tanx21+tan2x2+2(1−tan2x2)1+tan2x2+3dx⎡⎢
⎢⎣∵sinx=2tanx21+tan2x2,cosx=1−tan2x21+tan2x2⎤⎥
⎥⎦=∫1+tan2x22tanx2+2−2tan2x2+3(1+tan2x2)dx=∫sec2x2tan2x2+2tanx2+5dx
Putting tanx2=t
⇒12sec2x2=dt⇒sec2x2dx=2dt
Now,
I1=∫2dtt2+2t+5 =2∫dt(t+1)2+22 =22tan−1(t+12)+C =tan−1[12(tanx2+1)]+C∴I=65x+35ln|sinx+2cosx+3|−85tan−1(12(tanx2+1))+C