wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of 3cosx+2sinx+2cosx+3dx is
(where C is integration constant)

A
65x+35ln|sinx+2cosx+3|85tan1(12(tanx2+1))+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
35x+65ln|sinx+2cosx+3|85tan1(12(tanx2+1))+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
65x35ln|2sinx+cosx+3|+85tan1(12(tanx2+1))+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
35x+65ln|2sinx+cosx+3|85tan1(12(tanx2+1))+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 65x+35ln|sinx+2cosx+3|85tan1(12(tanx2+1))+C
I=3cosx+2sinx+2cosx+3dx
Let,
3cosx+2=A(sinx+2cosx+3)+B(cosx2sinx)+D
Comparing the coefficients of sinx,cosx and constant term on both sides, we get
A2B=0,2A+B=3,3A+D=2A=65,B=35 and D=85I=A(sinx+2cosx+3)+B(cosx2sinx)+Dsinx+2cosx+3dxI=Adx+Bcosx2sinxsinx+2cosx+3dx+D1sinx+2cosx+3dxI=Ax+Bln|sinx+2cosx+3|+DI1where I1=1sinx+2cosx+3dxI1=12tanx21+tan2x2+2(1tan2x2)1+tan2x2+3dx⎢ ⎢sinx=2tanx21+tan2x2,cosx=1tan2x21+tan2x2⎥ ⎥=1+tan2x22tanx2+22tan2x2+3(1+tan2x2)dx=sec2x2tan2x2+2tanx2+5dx

Putting tanx2=t
12sec2x2=dtsec2x2dx=2dt
Now,
I1=2dtt2+2t+5 =2dt(t+1)2+22 =22tan1(t+12)+C =tan1[12(tanx2+1)]+CI=65x+35ln|sinx+2cosx+3|85tan1(12(tanx2+1))+C

flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon