The correct option is D 1213x−513ln|3cosx+2sinx|+C
I=∫3sinx+2cosx3cosx+2sinxdx
Let,
3sinx+2cosx=A(3cosx+2sinx)+Bddx(3cosx+2sinx)⇒3sinx+2cosx=A(3cosx+2sinx)+B(−3sinx+2cosx)⇒−3B+2A=3 and 2B+3A=2⇒A=1213 and B=−513∴I=∫A(3cosx+2sinx)+B(−3sinx+2cosx)3cosx+2sinxdx =1213∫1⋅dx−513∫−3sinx+2cosx3cosx+2sinxdx =1213x−513ln|3cosx+2sinx|+C