3x−1(x−1)(x−2)(x−3)=A(x−1)+B(x−2)+C(x−3)⇒3x−1=A(x−2)(x−3)+B(x−1)(x−3)+C(x−1)(x−2)⋯(1)
By putting x=1;x=2 and x=3, we obtain
A=1, B=−5, C=4∴3x−1(x−1)(x+2) =1(x−1)−5(x−2)+4(x−3)⇒∫3x−1(x−1)(x−2)(x−3)dx =∫{1(x−1)−5(x−2)+4(x−3)}dx =ln|x−1|−5ln|x−2|+4ln|x−3|+m
Where m is an arbitrary constant.