The value of ∫3x13+2x11(2x4+3x2+1)4dx is equal to
(where C is constant of integration )
A
x46(2x4+3x2+1)3+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x126(2x4+3x2+1)3+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
x4(2x4+3x2+1)3+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x12(2x4+3x2+1)3+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bx126(2x4+3x2+1)3+C Let I=∫3x13+2x11(2x4+3x2+1)4dx ⇒I=∫3x13+2x11x16(2+3x2+1x4)4dx ⇒I=∫3x3+2x5(2+3x2+1x4)4dx
Put 2+3x2+1x4=t ⇒−2(3x3+2x5)dx=dt ∴I=−12∫dtt4 ⇒I=16t3+C ⇒I=16(2+3x2+1x4)3+C ∴I=x126(2x4+3x2+1)3+C