The value of ∫(ax+bx)2ax⋅bxdx is, where a>1,b>1 & a≠b
(where C is constant of integration)
A
(ab)xln(ab)+(ba)xln(ba)+2x+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(ab)xln(ab)−(ba)xln(ba)+2x+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(ab)xln(ab)+(ba)xln(ba)+x2+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(ab)xln(ab)+(ba)xln(ba)−2x+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A(ab)xln(ab)+(ba)xln(ba)+2x+C ∫(ax+bx)2ax⋅bxdx=∫a2x+b2x+2(ab)xax⋅bxdx =∫(ab)xdx+∫(ba)xdx+∫2dx{∵∫axdx=axlna+C}=(ab)xln(ab)+(ba)xln(ba)+2x+C