The value of ∫cos4x+cos2x−6sinx−2sin3x+2sinx+3dx is
(where C is constant of integration)
A
cos2x+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2cosx+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2sin2x+sinx+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2sin2x+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B2cosx+C Let I=∫cos4x+cos2x−6sinx−2sin3x+2sinx+3dx=∫cos4x−cos2x+2cos2x−2−6sinxsin3x+2sinx+3dx=∫−2sin3xsinx−2(1−cos2x)−6sinxsin3x+2sinx+3dx=∫−2sin3xsinx−2(2sin2x)−6sinxsin3x+2sinx+3dx=∫−2sinx(sin3x+2sinx+3)sin3x+2sinx+3dx=∫−2sinxdx=2cosx+C