The value of ∫cotx√5+9cot2xdx is equal to
(where C is constant of integration)
A
12sin−1(2sinx3)+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
12sin−1(3sinx2)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
13sin−1(3sinx2)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
13sin−1(2sinx3)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A12sin−1(2sinx3)+C I=∫cotx√5+9cot2xdx =∫cosx√5sin2x+9cos2xdx =∫cosx√9−4sin2xdx
Put sinx=t⇒(cosx)dx=dt ∴I=∫1√9−4t2dt =12∫1√94−t2dt =12sin−1(2t3)+C =12sin−1(2sinx3)+C