The value of ∫dx1+3cos2x
(where C is integration constant)
A
tan−1(tanx2)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12tan−1(tanx2)+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
tan−1(tanx3)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
13tan−1(tanx3)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B12tan−1(tanx2)+C Multiplying Numerator and Denominator of the given integral by sec2x, we get I=∫sec2xdxsec2x+3⇒I=∫sec2xdxtan2x+4
Put tanx=t ⇒sec2xdx=dt⇒I=∫dtt2+22⇒I=12tan−1t2+C[∵∫1x2+a2dx=1atan−1(xa)+C]∴I=12tan−1(tanx2)+C