The value of ∫dx5+4cosx is
(where C is integration constant)
A
54tan−1(13tanx2)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
54cot−1(13cotx2)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
23cot−1(13cotx2)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
23tan−1(13tanx2)+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D23tan−1(13tanx2)+C I=∫dx5+4cosx=∫dx5+4(1−tan2x2)(1+tan2x2)⎡⎢
⎢⎣∵cosx=1−tan2x21+tan2x2⎤⎥
⎥⎦⇒I=∫sec2x2dx9+tan2x2
Put tanx2=t ⇒sec2x2dx=2dt⇒I=∫2dt9+t2=23tan−1(t3)+C=23tan−1⎛⎜
⎜⎝tanx23⎞⎟
⎟⎠+C