Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
x(x2+a2)12a2+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
a2x(x2+a2)12+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
a2x(x2+a2)12+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Axa2(x2+a2)12+C I=∫dx(a2+x2)32
Substituting x=atanθ ⇒dx=asec2θdθ⇒I=∫asec2θdθa3sec3θ=1a2∫cosθdθ=(1a2)sinθ+C,sinθ=x√(x2+a2)=xa2√(x2+a2)+C