The value of ∫sinx+cosx2−sin2xdx is
(where C is constant of integration)
A
tan−1(sinx−cosx)+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
tan−1(sinx+cosx)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2tan−1(cosx−sinx)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2tan−1(sinx+cosx)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Atan−1(sinx−cosx)+C Let I=∫sinx+cosx2−sin2xdx=∫sinx+cosx1+(sinx−cosx)2dx
put sinx−cosx=y,(cosx+sinx)dx=dy ⇒I=∫dy1+y2=tan−1y+C⇒I=tan−1(sinx−cosx)+C