The value of ∫sinxsin3xdx is
(where C is integration constant)
I=∫sinxsin3xdx =∫sinx3sinx−4sin3xdx =∫13−4sin2xdx(∵sinx≠0)
Dividing numerator and denominator by cos2x,
⇒I=∫sec2x3sec2x−4tan2xdx
Putting tanx=t
⇒sec2xdx=dt
Now,
I=∫dt3(1+t2)−4t2 =∫dt3−t2 =∫1(√3)2−t2dt =12√3ln∣∣∣√3+t√3−t∣∣∣+C[∵∫1a2−x2dx=12aln∣∣∣a+xa−x∣∣∣+C] =12√3ln∣∣∣√3+tanx√3−tanx∣∣∣+C