The value of ∫x2(a+bx)2dx is:
(where a≠b and C is constant of integration)
A
1b3[a+bx+2aln|a+bx|+a2a+bx]+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1a3[a+bx+2aln|a+bx|+a2a+bx]+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1b3[a+bx−2aln|a+bx|−a2a+bx]+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
1a3[a+bx−2aln|a+bx|−a2a+bx]+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C1b3[a+bx−2aln|a+bx|−a2a+bx]+C Let I=∫x2dx(a+bx)2
Let a+bx=t ⇒x=(t−ab) ⇒dx=dtb ∴I=1b3∫t2−2at+a2t2dt ⇒I=1b3∫(1−2at+a2t2)dt ⇒I=1b3[t−2aln|t|−a2t]+C ∴I=1b3[a+bx−2aln|a+bx|−a2a+bx]+C