The correct option is B 2√3tan−1(x√3(x+1))+C
Let I=∫x+2(x2+3x+3)√x+1dx
Put x+1=t2⇒dx=2tdt
∴I=∫(t2−1)+2{(t2−1)2+3(t2−1)+3}√t2.(2t)dt=2∫t2+1t4+t2+1dt=2∫1+1t2t2+1+1t2dt
=2∫1+1t2(t−1t)2+(√3)2.dt
Put, t−1t=u
⇒(1+1t2)dt=du
=2∫duu2+(√3)2
=2√3tan−1(u√3)+C
=2√3tan−1(t2−1√3t)+C
=2√3tan−1(x√3(x+1))+C