The value of ∫etan−1x(1+x+x21+x2)dx is equal to
Consider the given equation.
I=∫etan−1x(1+x+x21+x2)dx
I=∫(etan−1x+xetan−1x+x2etan−1x1+x2)dx ……… (1)
Let t=xetan−1x
t=xetan−1x
dtdx=etan−1x×1+x(etan−1x)×11+x2
dtdx=etan−1x+xetan−1x1+x2
dt=(etan−1x+x2etan−1x+xetan−1x1+x2)dx
From equation (1), we get
I=∫1dt
I=t+C
On putting the value of t, we get
I=xetan−1x+C
Hence, this is the answer.