1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Variable Separable Method
The value of ...
Question
The value of
∫
d
t
t
2
+
2
x
t
+
1
(
x
2
>
1
)
is....
A
1
2
√
(
x
2
−
1
)
log
t
+
x
−
√
x
2
−
1
t
+
x
+
√
(
x
2
+
1
)
.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1
2
√
(
x
2
−
1
)
log
t
+
x
−
√
x
2
−
1
t
+
x
+
√
(
x
2
−
1
)
+
c
.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
1
2
√
(
x
2
+
1
)
log
t
+
x
−
√
x
2
+
1
t
+
x
+
√
(
x
2
+
1
)
.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1
2
√
(
x
2
+
1
)
log
t
+
x
−
√
x
2
+
1
t
+
x
+
√
(
x
2
−
1
)
+
c
.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
B
1
2
√
(
x
2
−
1
)
log
t
+
x
−
√
x
2
−
1
t
+
x
+
√
(
x
2
−
1
)
+
c
.
Let
I
=
∫
1
t
2
+
2
t
x
+
1
d
t
=
∫
d
t
(
x
+
t
−
√
x
2
−
1
)
(
x
+
t
+
√
x
2
−
1
)
..... [Factoring denominator]
=
∫
(
1
2
√
x
2
−
1
(
x
+
t
−
√
x
2
−
1
)
−
1
2
√
x
2
−
1
(
x
+
t
+
√
t
2
−
1
)
)
d
t
.... [Using partial decomposition]
=
∫
d
t
2
√
x
2
−
1
(
x
+
t
−
√
x
2
−
1
)
−
∫
d
t
2
√
x
2
−
1
(
x
+
t
+
√
x
2
−
1
)
=
I
1
−
I
2
I
1
=
∫
d
t
2
√
x
2
−
1
(
x
+
t
−
√
x
2
−
1
)
Put
t
+
x
−
√
x
2
−
1
=
u
⇒
d
t
=
d
u
⟹
I
1
=
1
2
√
x
2
−
1
∫
d
u
u
⟹
I
1
=
1
2
√
x
2
−
1
log
(
u
)
⟹
I
1
=
1
2
√
x
2
−
1
log
(
x
+
t
−
√
x
2
−
1
)
Similarly,
I
2
=
∫
d
t
2
√
x
2
−
1
(
x
+
t
+
√
x
2
−
1
)
Put
t
+
x
+
√
x
2
−
1
=
u
⇒
d
t
=
d
u
⟹
I
2
=
1
2
√
x
2
−
1
∫
d
u
u
⟹
I
2
=
1
2
√
x
2
−
1
log
(
u
)
⟹
I
2
=
1
2
√
x
2
−
1
log
(
x
+
t
+
√
x
2
−
1
)
∴
I
=
1
2
√
x
2
−
1
log
(
x
+
t
−
√
x
2
−
1
)
−
1
2
√
x
2
−
1
log
(
x
+
t
+
√
x
2
−
1
)
+
c
=
1
2
√
x
2
−
1
[
log
(
x
+
t
−
√
x
2
−
1
)
−
log
(
x
+
t
+
√
x
2
−
1
)
]
+
c
=
1
2
√
x
2
−
1
[
log
(
x
+
t
−
√
x
2
−
1
x
+
t
+
√
x
2
−
1
)
]
+
c
Suggest Corrections
0
Similar questions
Q.
Assertion :Statement-1:
∫
x
2
−
1
(
x
2
+
1
)
√
x
4
+
1
d
x
=
sec
−
1
∣
∣
∣
x
2
+
1
x
√
2
∣
∣
∣
+
C
Reason: staement-2:
∫
d
t
t
√
t
2
−
a
=
1
√
a
sec
−
1
∣
∣
∣
t
√
a
∣
∣
∣
+
C
Q.
∫
sin
(
tan
−
1
√
x
)
d
x
(
x
≥
0
)
is
Q.
∫
√
x
+
1
x
d
x
is equal to