wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of dtt2+2xt+1(x2>1)is....

A
12(x21)logt+xx21t+x+(x2+1).
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12(x21)logt+xx21t+x+(x21)+c.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
12(x2+1)logt+xx2+1t+x+(x2+1).
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
12(x2+1)logt+xx2+1t+x+(x21)+c.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 12(x21)logt+xx21t+x+(x21)+c.
Let I=1t2+2tx+1dt
=dt(x+tx21)(x+t+x21) ..... [Factoring denominator]
=(12x21(x+tx21)12x21(x+t+t21))dt .... [Using partial decomposition]
=dt2x21(x+tx21)dt2x21(x+t+x21)
=I1I2

I1=dt2x21(x+tx21)
Put t+xx21=udt=du
I1=12x21duu
I1=12x21log(u)
I1=12x21log(x+tx21)

Similarly,
I2=dt2x21(x+t+x21)
Put t+x+x21=udt=du
I2=12x21duu
I2=12x21log(u)
I2=12x21log(x+t+x21)
I=12x21log(x+tx21)12x21log(x+t+x21)+c

=12x21[log(x+tx21)log(x+t+x21)]+c

=12x21[log(x+tx21x+t+x21)]+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon