The value of ∫ex(x2tan−1x+tan−1x+1)dxx2+1 is equal to
∫etan−1x(1+x+x2).d(cot−1x) is equal to
equals
A. x tan−1 (x + 1) + C
B. tan− 1 (x + 1) + C
C. (x + 1) tan−1 x + C
D. tan−1 x + C