The correct option is D 16tan−1(cosθ2)−13tan−1(cosθ)+C
Let I=∫sinθ dθ(4+cos2θ)(2−(1−cos2θ))
= ∫sinθdθ(4+cos2θ) (1+cos2θ)
Put cosθ=t
⇒−sinθ dθ=dt ⇒sinθ dθ=−dt
⇒I=−∫dt(4+t2)(1+t2)
From Partial Fraction, we can write
1(4+t2)(1+t2)=At+B4+t2+Ct+D1+t2
1=(At+B)(1+t2)+(Ct+D)(4+t2)
1=(B+4D)+(A+4C)t+(B+D)t2+(A+C)t3
Put t=0, we have B+4D=1⋯(i)
Equating the coeff. of t on both sides, we have A+4C=0⋯(ii)
Equating the coeff. of t2 and t3 respectively
we obtain B+D=0⋯(iii) and
A+C=0⋯(iv)
Solving (i),(ii),(iii) and (iv), we obtain
A=C=0,B=−13 and D=13
∴1(4+t2)(1+t2)=−134+t2+131+t2
I=−[−13∫14+t2dt+13∫11+t2dt]
=−[−16tan−1t2+13tan−1t]+C
=16tan−1(cosθ2)−13tan−1(cosθ)+C