The correct option is C 18log|sinx−1sinx+1|−14√2log|√2sinx−1√2sinx+1|+c
I=∫sinxsin4xdx
=14∫1cosx(cos2x−sin2x)dx
=14∫cosx(1−sin2x)(1−2sin2x)dx
Put sinx=t⇒cosxdx=dt
⇒I=14∫dt(1−t2)(1+t2)
Now using partial fraction method,we will find the value of
1(1−t)(1+t)(1−t2)=A1−t+B1+t+C1−√2t+D1+√2t
⇒1=A(1+t)(1−2t2)+B(1−t)(1−2t2)+C(1−t2)(1+√2t)+D(1−t2)(1−√2t)
For t=1⇒A=−12
For t=−1⇒B=−12
For t=0⇒A+B+C+D=1
⇒C+D=2
For t=1√2⇒C=1
⇒D=1
So,I=14[−12∫dt1−t−12∫dt1+t+∫dt1−√2t+∫dt1+√2t]
=18log|1−sinx|−18log|1+sinx|−14√2log|1−√2sinx|+14√2log|1+√2sinx|+c
I=18log|sinx−1sinx+1|−14√2log|√2sinx−1√2sinx+1|+c