wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of sinxsin4xdx is

A
14log|sinX1sinX+1|12log|2sinX12sinX+1|+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
18log|cosx1cosx+1|122log|2cosx12cosx+1|+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
18log|sinx1sinx+1|142log|2sinx12sinx+1|+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
18log|sinx1sinx+1|+log|2sinx12sinx+1|+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 18log|sinx1sinx+1|142log|2sinx12sinx+1|+c
I=sinxsin4xdx
=141cosx(cos2xsin2x)dx
=14cosx(1sin2x)(12sin2x)dx
Put sinx=tcosxdx=dt
I=14dt(1t2)(1+t2)
Now using partial fraction method,we will find the value of
1(1t)(1+t)(1t2)=A1t+B1+t+C12t+D1+2t
1=A(1+t)(12t2)+B(1t)(12t2)+C(1t2)(1+2t)+D(1t2)(12t)
For t=1A=12
For t=1B=12
For t=0A+B+C+D=1
C+D=2
For t=12C=1
D=1
So,I=14[12dt1t12dt1+t+dt12t+dt1+2t]
=18log|1sinx|18log|1+sinx|142log|12sinx|+142log|1+2sinx|+c
I=18log|sinx1sinx+1|142log|2sinx12sinx+1|+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Area under the Curve
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon