Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
√2sec−1(x2+1√2x)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1√2csc−1(x2+1√2x)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
√2csc−1(x2+1√2x)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A1√2sec−1(x2+1√2x)+C I=∫x2−1(x2+1)√1+x4dx=∫(1−1x2)x2x(x+1x)x√x2+1x2dx=∫(1−1x2)(x+1x)√(x+1x)2−2dx Substituting (x+1x)=t⇒(1−1x2)dx=dt We get I=∫dtt√t2−2=∫dtt2√1−2t2 Again substituting √2t=4⇒√2t2dt=du We get I=−1√2∫du√1−u2=1√2cos−1u+c=1√2cos−1⎛⎜
⎜⎝√2x+1x⎞⎟
⎟⎠+c=1√2cos−1(√2xx2+1)+c=1√2sec−1(x2+1√2x)+c