The value of ∫(ln(1+sinx)+xtan(π4−x2))dx is equal to
(where C is integration constant)
A
xln(1+sinx)+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
ln(1+sinx)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−xln(1+sinx)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
ln(1−sinx)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Axln(1+sinx)+C I=∫(ln(1+sinx)+xtan(π4−x2))dx↓f(x)↓xf′(x)
We know ddx(ln(1+sinx))=cosx1+sinx=cos2x2−sin2x2(cosx2+sinx2)2=cosx2−sinx2cosx2+sinx2=1−tanx21+tanx2=tan(π4−x2)
So, I=xln(1+sinx)+C[∵∫(f(x)+xf′(x))dx=xf(x)+C]