wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of (ln(1+sinx)+xtan(π4x2))dx is equal to
(where C is integration constant)

A
xln(1+sinx)+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
ln(1+sinx)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
xln(1+sinx)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
ln(1sinx)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A xln(1+sinx)+C
I=(ln(1+sinx)+xtan(π4x2))dx f(x) x f(x)

We know
ddx(ln(1+sinx))=cosx1+sinx=cos2x2sin2x2(cosx2+sinx2)2=cosx2sinx2cosx2+sinx2=1tanx21+tanx2=tan(π4x2)
So,
I=xln(1+sinx)+C[(f(x)+x f(x))dx=x f(x)+C]

flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon