The correct option is C π2
Let I=2π∫0xsin8xsin8x+cos8xdx ⋯(i)
Using property
b∫af(x)dx=b∫af(a+b−x)dx
⇒I=2π∫0(2π−x)sin8xsin8x+cos8xdx ⋯(ii)
Adding (i) and (ii), we get
2I=2π2π∫0sin8xsin8x+cos8xdx
⇒I=4ππ/2∫0sin8xsin8x+cos8xdx
⎧⎪⎨⎪⎩∵2a∫0f(x) dx=2a∫0f(x) dx, when f(x)=f(2a−x)⎫⎪⎬⎪⎭
⇒I=4π⋅π4=π2
⎛⎜⎝∵π/2∫0sinnxcosnx+sinnxdx=π4⎞⎟⎠