The correct option is A 0
π/2∫0[cos(2018πsin2x)+cos(1009πsinx)] dx
Let I1=π/2∫0cos(2018πsin2x) dx
I2=π/2∫0cos(1009πsinx) dx
Now,
I1=π/2∫0cos(1009π(1−cos2x)) dx⇒I1=−π/2∫0cos(1009πcos2x)dx⇒I1=−2π/4∫0cos(1009πcos2x) dx
Assuming 2x=t⇒2 dx=dt
⇒I1=−π/2∫0cos(1009πcost)dt
Putting x→π2−x, we get
⇒I1=−I2∴I1+I2=0