The correct option is A 643
Let I=2∫1(4x3−5x2+6x+9)dx
Splitting the integrals, we have
I=2∫14x3dx−2∫15x2dx+2∫16x dx+2∫19dx
=42∫1x3dx−52∫1x2dx+62∫1x dx+92∫1dx
=4[x44]21−5[x33]21+6[x22]21+9[x]21
=[24−14]−5[233−133]+6[222−122]+9[2−1]
=(16−1)−5(73)+3(3)+9
=33−353
=99−353=643