wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of 3/21|xsinπx| dx=kπ+1πm, then k+m=

Open in App
Solution

I=3/21|xsinπx| dxI=01(x)(sinπx) dx +10xsinπx dx +3/21x(sinπx) dxI=11xsinπx dx3/21xsinπx dx
I1=11xsinπx dx (1)I1=210xsinπx dxI1=210(1x)sinπx dx (2)
Adding (1) and (2),
I1=10sinπx dxI1=[cosπxπ]10I1=2π
I2=3/21xsinπx dxI2=[xcosπxπ]3/21+3/21cosπxπ dxI2=1π+[sinπxπ2]3/21I2=1π1π2
Therefore,
I=2π+1π+1π2I=kπ+1πm=3π+1π2k+m=5

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Piecewise Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon