I=3/2∫−1|xsinπx| dx⇒I=0∫−1(−x)(−sinπx) dx +1∫0xsinπx dx +3/2∫1x(−sinπx) dx⇒I=1∫−1xsinπx dx−3/2∫1xsinπx dx
I1=1∫−1xsinπx dx ⋯(1)⇒I1=21∫0xsinπx dx⇒I1=21∫0(1−x)sinπx dx ⋯(2)
Adding (1) and (2),
⇒I1=1∫0sinπx dx⇒I1=−[cosπxπ]10⇒I1=2π
I2=3/2∫1xsinπx dx⇒I2=[−xcosπxπ]3/21+3/2∫1cosπxπ dx⇒I2=−1π+[sinπxπ2]3/21⇒I2=−1π−1π2
Therefore,
I=2π+1π+1π2⇒I=kπ+1πm=3π+1π2⇒k+m=5