The value of a∫1[x]f′(x)dx,a>1, where [x] denotes the greatest integer not exceeding x is
A
af(a)−{f(1)+f(2)+....f([a])}
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
[a]f(a)−{f(1)+f(2)+....f([a])}
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
[a]f([a])−{f(1)+f(2)+......+f(a)}
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
af([a])−{f(1)+f(2)+.....+f(a)}
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B[a]f(a)−{f(1)+f(2)+....f([a])} Let I=a∫1[x]f′(x)dx,a>1
Let a=k+h, where [a]=k, and 0≤h<1 ∴∫a1[x]f′(x)dx =2∫11f′(x)dx+3∫22f′(x)dx+.....+ k∫k−1(k−1)f′(x)dx+k+h∫kkf′(x)dx =[f(2)−f(1)]+2[f(3)−f(2)]+.....+(k−1)[f(k)−f(k−1)]+k[f(k+h)−f(k)] =−f(1)−f(2)−f(3).....−f(k)+kf(k+h) =[a]f(a)−[f(1)+f(2)+....f([a])]